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Introduction

Leafing through the most recent issues of Animal Behaviour it struck me that almost all prob-
lems of parametric statistics are addressed in one paper or another, but only very rarely all of
them in one. The same points pose problems to peolpe whom T advice on statistics. This and
the fact that T am an ethologist by training is why I would like to make some commentaries on
the use of statistics in studies of animal behaviour.

First of all I would like to recommend to summarize data at the start of an evalution as
little as possible. The smallest units that can be reasonably assumed to be independent should
at least be kept (summaries per individual, per time period, per observation, per experiment).
Sticking to these smallest units will often help to think about how to display the data and what
kind of statistics are possible to use.

These units will define the variability of our data which is basic to statistics. It will often
help to see what the replicates of an experiment could be, and thus help to find a test. Often one

can also see a way of testing a result avoiding a y*-test, which is very sensitive to statistically
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dependent data and should be avoided whenever possible (lit 7).

In principal the replicates (or the smallest observational units) should be statistically inde-
pendent of each other. This is often not possible in studies of animal behaviour. Thus we can
either use matched tests where e. g. different individuals are tested in all possible conditions
or we have to assume that our observational units are independent eventhough the same ani-
mals are observed several times (pseudo-replication). In the latter the generality of the results
is questionable and the results might be specific to the observed set and might not easily be
extrapolated to other individuals or settings.

A general point is that in many papers dozens of tests are conducted. We should be aware
that with a probability of an error @ = 0.05 we will find one significant result within 20 tests by
pure chance. Thus we should either focus on a few important questions while testing or adjust
the a to a more conservative value (at least mentally, i. e. only cautiously interpret results

relying on a few significant test when many have been conducted).

Graphics

The first step of a good evaluation should always be a thorough graphical investigation of the
data. A good visualization, graphics display, of the data is often more convincing and intuitive
to the reader than the actual statistical result. To illustrate data, mean and standard deviation
are often given in figures and tables (where sometimes even raw data is shown) without the
claim of the data being normally distributed. But only in the latter case can these measures
describe the data adequately.

There is one very condensed form to visualize the true distribution of a data set: boxplots
(Fig. 1 C-F). Boxplots show the lower and upper quartile in form of a box, the median as a

straight line within the box and the range of the data with bars extending from the box. These



bars are often restricted to extend no farther than 1.5 times the inter-quartile range from the
median. All data that extend farther are treated as extreme values and shown as individual
dots or horizontal bars (Fig. 1 D-E).

Even if different samples have the same mean and standard deviation (Fig. 1 A, B) the
boxplots show the differences in the distribution of a normally distributed random sample, a
sample with extreme values (or long tails), or a sample with a skew distribution (Fig. 1 C-E).
The latter can be brought to resemble a normal distribution by taking the log (Fig. 1 F, see

below).

Non-parametric tests

If there are just two groups which one would like to compare it is strongly advised to use
the non-parametric Wilcoxon test for matched samples (i. e. individuals are all tested in two
conditions) and the Man-Whitney-U test for non-matched samples (two different groups have
been tested in the two conditions). These tests correspond to the dependent and independent
t-test but do not assume any specific distribution of the data. The statistical power of these
tests is almost as good as the one of the t-test (Lehmann, 1975 or ?) thus even if the data are
normally distributed the non-parametric tests are almost as likely to pick up a difference as the
t-test. If the data is not normally distributed or if the sample is small, and thus it is difficult
to decide whether the data is normally distributed (see below), we conduct a wrong analysis if
we use the t-test. Both these restrictions (non-normal distribution and/or small sample size)
often occur in the study of animal behaviour.

It is true that the t-test can still be conducted and yield a significant result with a sample so
small that a non-parametric test can not be statistically significant anymore. This use has to be

questioned, however, because again we can not decide whether the data is normally distributed



(see below) and it is dubious to conduct a statistical test with such few data in general.

The strangest thing in this regard are papers that use both t-tests AND their non-parametric
equivalents; depending on whether they give the expected result or not?

The same is true for the simplest cases of analyses of variance (ANOVA) to test differences
among more than two groups: the non-parametric equivalents are available as the Friedman test
for matched and the Kruskal-Wallis test for non-matched data. In the realm of non-parametric
tests one is even able to test for a monotonous trend between the groups: The Page—test for
matched and the Jonkhere—test for non-matched data. It is advisable to test a data set first
with a Kruskal-Wallis or a Friedman and only after establishing a significant difference with

these “two—sided” tests use the “one—sided” Page or Jonkheere to test for the trend.

Parametric statistics: theory

If one wants to include more than one variable (multiple and multivariate tests) we can only rely
on parametric statistics to date. Parametric statistics have, as mentioned already, something
to do with the normal distribution. But what exactly is normally distributed?

Almost all parametric tests (all linear models) can be written in the form y; = a+ﬂ(1)xz(-1) +
ﬁ(Q)xz(?) 4+t B”xfn) + ¢;, where the ¢; are assumed to be random errors independently taken
from a normal distribution with mean 0 and some sample-variance o*. This is the same as
saying that the data split according to all variables is normally distributed. But if we split our
data like that we usually get very small samples for each class of data and find it thus difficult
to judge whether the data are normally distributed. Tt is easier to work with all the errors at
the same time in an analysis of residuals (see below). The errors are estimated by the residuals,

i. e. by the difference of the expected (based on the estimated coefficients a and b(j)) and the

observed values of our response variable. Before we can have a look at the distribution of our



residuals we have to conduct a first attempt of a statistical evaluation.

The first step to do so is the transformations of the response and the predictive variables.
Tukey recommends the following “first—aid transformations” which should always be used if
there are no theoretical considerations oposing it (as e. g. when a formula underlying a phe-

nomenon 1s leOVVTl)Z

absolute values (time, concentrations, etc.): g = log(y)

counts: y = ,/y

proportions (percentages/100): § = arcsin(\/g)

The next step is a first round of evaluations. With the nowadays available computer power
it is recommended to start out with a model including all variables (and their interactions) that
might be interesting and then follow a step-wise backwards elimination strategy, i. e. dropping
the most nonsiginificant variable one at the time, with the restriction that we shoudn’t drop
simple terms if those variables are involved in statistically significant interactions as well. Thus
we end up with a preliminary model. Now we have to have a look at the residuals and might
see that they deviate from normality, this can often be helped with further transformation of
the data, the inclusion of other predictive variables (e. g. the power of a considered variable),
or the exclusion of a few extreme values or a group of values which behaves differently than
the rest of the data. Then a new circle of reduction and residual analysis starts. Interacions
appear if two variables influence the response variable in a non-additive way. One can imagine
groups of animals that react differently to the increase of a variable (see example below).

Now I finally come to the mystic analysis of residuals (= estimate of errors) of which we
assumed that they were independently sampled from one specific normal distribution with mean

Zero and variance 0'2.



It is rather difficult to test a sample for normality in a statistical sense because statistical
tests are designed to reject a hypothesis and can not really proove a hypothesis to be true. Thus
if we test a sample for normality and can’t reject the zero hypothesis, we can only say that the
deviations from normality are not big enough to be picked up by the test for the given sample
size. Thus one often gives up formal statistical testing and uses graphical methods instead.

In the “normal-plot” the residuals are drawn against the corresponding quantiles of a normal
distribution. If data are normally distributed a straight line results in this plot (Fig. 2 A,
D). Different aberrations can easly be detected in the plot: long tails (outliers) or a squew
distribution (Fig. 2 B, C). These deviations from a normal distribution can be dealt with by
exculding (a few) outliers from analysis, transformation of data and/or including other variables
or derivates of already included variables (e. g. a variable to the power of two). With this plot
we can thus see whether our data is normally distributed. This is easier seen in this plot than
in a histogramm because deviations from a straight line can be more easily perceived by the
human eye (Fig. 2, 3).

In the “Tukey—Anscombe-plot” we draw the residuals against the estimated values of our
response variable. In this plot one can check, whether the number of positie and the number
of negative residuals is about the same, whether the positive and the negative residuals are of
about the same size and whether they are the same size along the axis of the estimated values.
Especially outliers and a distribution that asks for a log transformation can be detected in this
plot (in the latter case the residuals grow with growing estimate).

The leverage (or the Mahanalobis distance) is a measure of how much a single data point
influences the whole analysis. Thus we don’t want to include points in our analysis with a big
leverage and a big residual at the same time, because these are points that heavily influence
the outcome of the evluation. These points can be detected by plotting the residuals against

the leverages.



Finally it is advisable to plot the residuals against all the predictive variables and against
time if data was gathered in a certain temporal sequence. There should be no pattern in the
residuals along the axis of the predictive variable and the variance along the axis should be
constant. If possible a plot of the residuals against two predictive variables can give insight
into interactions of two variables that have not yet been considered.

A good way not to overinterpret the data is to run a couple of simulations, i. e. use the
formula of the statistical evaluation and add some independent identically normally distributed

errors, to see what patterns of residuals might look like by pure chance.

Parametric statistics: an illustrative example

To make the above mentioned points clearer. I will now present a sample evaluation: a multiple
regression problem with some simulated data. Imagine we are interested in the number of
warning calls per time unit an individual of a species gives in a situation we have defined as
being dangerous. We would like to bring the number of calls into relation with the sex (SEX)

and age (AGE) of the caller and on the number of animals present (GROUP).
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sigificant factors. In this example we end up with the following situation:

Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 0.4646 0.1749 2.6560 0.0093
SEX 0.6079 0.1538 3.9536 0.0002
AGE -0.0488 0.0163 -2.9980 0.0035
GROUP -0.0518 0.0197 -2.6298 0.0100
SEX:AGE -0.0275 0.0095 -2.8980 0.0047
SEX:GROUP -0.0341 0.0156 -2.1852 0.0314
AGE:GROUP 0.0056 0.0018 3.1082 0.0025

Residual standard error: 0.1859 on 93 degrees of freedom
Multiple R-Squared: 0.4107
F-statistic: 10.8 on 6 and 93 degrees of freedom, the p-value is 4.325e-09

Except for the small multiple R-squared, which is a measure of how well the data fit to the
model, and which is usually quite low in biological problems, all variables and their interactions
seem to have a significant influence and appear in all possible interactions.

If we have a look at the residuals we can immediately see that something must be wrong
(Fig. 5). Especially the strongly downwards sloped curve in the normal-plot, the structure in
the Tukey—Anscombe-plot and the explosion in the size of the residuals towards lager fitted
values tells us that we need to transform our data.

Thus in the next step we apply the Tukey—first—aid transformations. I assume here that the
number of calls and the age is known rather exactly, i. e. that they can be considered absolute
continuous variables, thus we log—transform them (IAGE). The number of animals in a group
is a count and thus square-root-transformed (sGROUP).

Again we run the model and exclude the non—significant variables. We find:

Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 9.4509 1.8037 5.2398 0.0000
SEX 1.8941 0.4946 3.8296 0.0002
1AGE -3.7116 0.3807 -9.7488 0.0000
sGROUP -3.4604 0.5582 -6.1987 0.0000

Residual standard error: 2.463 on 96 degrees of freedom
Multiple R-Squared: 0.6003



F-statistic: 48.06 on 3 and 96 degrees of freedom, the p-value is 0

Only the single variables are significant in this approach, but again the residuals show us,
that our residuals are not idenpendently normally distributed. In the normal plot (sloped to
the top), the Tukey—Anscombe plot and the residuals against age, we see that there seems to
be a quadratic relation between number of calls and age (Fig. 6). Thus we include the age by

the power of two in the next step of the analysis and run the model again:

Coefficients:
Value Std. Error t value Pr(>ltl)

(Intercept) =-5.0691 0.6664 -7.6071 0.0000
SEX 2.0674 0.0685 30.1675 0.0000

1AGE 14.9191 0.3827 38.9836 0.0000

1AGE2 -5.0151 0.0727 -69.0242 0.0000
sGROUP -2.0020 0.2314 -8.6518 0.0000
1AGE:sGROUP -0.9397 0.1125 -8.3551 0.0000

Residual standard error: 0.3408 on 94 degrees of freedom
Multiple R-Squared: 0.9925
F-statistic: 2489 on 5 and 94 degrees of freedom, the p-value is 0

In the plots of the residuals we see now, that there are two outliers (Fig. 7). And going back
to the “original data” we realize, that we made a mistake in transfering the data, in that we
have included the tenfould values for the number of calls that we should have. After correction

of these values we run the model once more:

Coefficients:
Value Std. Error +t value Pr(>ltl)

(Intercept) -5.2000 0.1796  -28.9468 0.0000
SEX 1.9718 0.0185 106.7298 0.0000

1AGE 15.0766 0.1032 146.1353 0.0000

1AGE2 -5.0061 0.0196 -255.5806 0.0000
sGROUP  -1.9236 0.0624 -30.8368 0.0000
1AGE:sGROUP  -1.0198 0.0303 -33.6335 0.0000

Residual standard error: 0.09188 on 94 degrees of freedom
Multiple R-Squared: 0.9995
F-statistic: 34520 on 5 and 94 degrees of freedom, the p-value is 0

Now even the plots of the residuals are satisfying as they do not largely deviate from what

we expect them to look (Fig. 8). The points in the normal-plot lie on a line, they are randomly



scattered to both sides of zero along the axis of the fitted values and the variables, and there
are no points in the leverage—plot with large residual and large leverage at the same time.

In Fig. 9 we see an example of how the residual pattern looks like if would have neglected the
inteaction between age and group. We can clearly see that neighbouring residuals are likely to
be similar; a clear hint on that they are not independent and there is an underlying interaction
of IAGE and sGROUP.

The interpretation of this model would then be that females are more likely to call as a
warning to others (as in matrifocal species), that middle aged individuals are giving more calls
than others (those could be the ones most likely to have young offspring), that the number of
calls decreases if the group size increases, and that the older individuals adjust better to group

size than younger individuals (the interaction).

Final remark

In conclusion, T hope that T could show what strategies to follow if one has to rely on parametric
statistics in the study of animal behaviour. Unfortunately with these tests the work is not done
when one has received a p-value with the help of some computer software. But often the
detailed occupation with ones data, e. g. during analysis of residuals can lead to new ideas and
insights in a data set. Another approach is to use so called robuste statistics, but those are
still hardly implemented in computer programs thus I don’t want to further comment on them
for the moment, but they are an important tool in dealing with random distributions that are

slightly disturbed.
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1 Comparison of different graphical ways to display the distribution of data. All samples
have means equal to zero and variance equal to one (in this case also the standard devi-
ation is one) as seen in (A) mean + std. dev. and (B) mean and std. dev. (C) boxplot
of normally distributed random numbers, (D) boxplot of a distribution with outliers, (E)
boxplot of a skew distribution, (F) boxplot of (E) after taking the log (of the data plus a
constant) and normalisation.

2 Normal-plots of the distributions shown in Fig. 1 (C) - (F).
3 Histograms of the distributions shown in Fig. 1 (C) - (F).

4 Number of calls per unit time in dependence of sex (top left), age (bottom left) and
number of animals present (bottom right) for the simulated data set. Young animals
are given by open circles, old ones by black squares. There seems to be no correlation
between the age of an individual and the group size it is found in (top right).

5 Residual analysis for the untransformed data. From top left: normal-plot, Tukey—
Anscombe-plot, leverage—plot, residuals against the variables (sex, age, number of animals
in group).

6 Residual analysis for the data when Tukey—first—aid transformation is applied (types
of plots as in Fig. 5).

7 Residual analysis for the data after inlcuding of age to the power of two (types of plots
as in Fig. 5).

8 Residual analysis for the data after correction of the extreme values: the final model
(types of plots as in Fig. 5).

9 Residuals (slope given by their sign, length reflects the size) if the significant interaction
is not included in the model.
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